# Context Strategy Object div strong 🔨 In Development — This section is still being developed and may change. Represents a context management strategy configuration with its properties and capabilities. ## Properties **`id`** string Unique identifier for the context strategy. Format: `ctx_` followed by alphanumeric characters. **`name`** string Human-readable name for the context strategy (e.g., "Full Context", "Auto Management"). **`description`** string Detailed description of what the strategy does and when to use it. **`mode`** string The strategy identifier used in configuration. Values: `full`, `auto`, `saver`, `off`. **`capabilities`** object Configuration capabilities and limitations of this strategy. details summary Show capabilities **`contextRetention`** string How context is retained. Values: `complete`, `intelligent`, `minimal`, `none`. **`performance`** string Performance characteristics. Values: `high_memory`, `balanced`, `low_memory`, `minimal`. **`recommendedFor`** array of strings Recommended use cases for this strategy. Example: `["complex_analysis", "research", "general_use"]`. **`tradeoffs`** object Advantages and disadvantages of using this strategy. details summary Show tradeoffs **`advantages`** array of strings List of benefits. Example: `["maximum_context", "best_reasoning"]`. **`disadvantages`** array of strings List of drawbacks. Example: `["higher_cost", "slower_responses"]`. **`isDefault`** boolean Whether this is the default context strategy for new assistants. **`createdAt`** integer Unix timestamp (seconds) when the strategy was created. **`updatedAt`** integer Unix timestamp (seconds) when the strategy was last updated. ## Returns A [ApiResponse](#apiresponse) object containing the API response data. ## Example Context Strategy Full Context Strategy ```json { "id": "ctx_full_context", "name": "Full Context", "description": "Maintains the entire conversation history for maximum continuity and complex reasoning tasks.", "mode": "full", "capabilities": { "contextRetention": "complete", "performance": "high_memory", "recommendedFor": ["complex_analysis", "research", "deep_reasoning"], "tradeoffs": { "advantages": ["maximum_context", "best_reasoning", "complete_history"], "disadvantages": ["higher_cost", "slower_responses", "memory_intensive"] } }, "isDefault": false, "createdAt": 1728057600, "updatedAt": 1728057600 } ``` Auto Strategy ```json { "id": "ctx_auto_management", "name": "Auto Management", "description": "Intelligent context management that adapts to conversation complexity and relevance.", "mode": "auto", "capabilities": { "contextRetention": "intelligent", "performance": "balanced", "recommendedFor": ["general_use", "mixed_workloads", "production"], "tradeoffs": { "advantages": ["balanced_performance", "adaptive", "cost_effective"], "disadvantages": ["less_predictable", "may_drop_context"] } }, "isDefault": true, "createdAt": 1728057600, "updatedAt": 1728057600 } ``` Saver Strategy ```json { "id": "ctx_minimal_saver", "name": "Minimal Saver", "description": "Minimal context retention optimized for cost and speed in simple interactions.", "mode": "saver", "capabilities": { "contextRetention": "minimal", "performance": "low_memory", "recommendedFor": ["simple_queries", "high_volume", "cost_sensitive"], "tradeoffs": { "advantages": ["lowest_cost", "fastest", "efficient"], "disadvantages": ["limited_context", "poor_complexity", "stateless"] } }, "isDefault": false, "createdAt": 1728057600, "updatedAt": 1728057600 } ```